
© 2022 Arm

David Hsu

Arm Confidential
Compute Architecture

An Introduction

2 © 2022 Arm2 © 2022 Arm Limited (or its affiliates)

The Future is Built
on Arm

Semiconductor IP Business

Focused on freedom
and flexibility to
innovate

With a partnership
based culture
& business model

Active licenses, growing by
100+ every year

2000+

Industry leaders and high-growth
start-ups; chip companies and OEMs

600+
licensees

Arm-based chips shipped
to-date

230bn+

Arm-based chips shipped in
FY2021

29bn

The global leader
in the development
of licensable
compute technology

- R&D outsourcing for
semiconductor companies

- Technology reused across
multiple applications

- Licensees take advantage
of learnings from a uniquely
collaborative ecosystem

3 © 2022 Arm3 © 2022 Arm Limited (or its affiliates)

70%
of the world’s population use
Arm processor technology

3 © 2022 Arm Limited (or its affiliates)

4 © 2022 Arm

Strong Industry Trend Towards Confidential Computing

• Edge Devices:
increasing use of
sensitive private data
for ML Models
(Biometrics, Health,
Shopping, Fintech,
Behavioural, NLP…)

• Regulation: concerns
about personal data
privacy are growing
rapidly.
• GDPR (EU)
• HIPAA (USA)
• SHIELD (New York)
• CCPA (California)

5 © 2022 Arm

Proliferation of Confidential Compute Solutions

Google Asylo
Google OAK

Redhat
Enarx

Microsoft
OpenEnclave

Azure Confidential
computing

AWS Nitro
Enclaves

Baidu MesaTEE

Apache Teaclave

Google
confidential VMs

Veracruz

Veraison

Confidential Compute Consortium

• Linux foundation

6 © 2022 Arm

Hardware-backed Isolation for All Workloads

Mobile / PC / DTV IoT Cloud Edge Compute

Automotive High end Wearables

EmailSocial Media Browsing

OS Services
Enterprise

Apps
Content

Protection
Health / Fitness

Apps

OEM Apps
Personal

Data
Content

Protection
Autonomous

Driving Health SmartKey Fitness Medical

Tenant 1

Tenant n Multi-Vendor
Environment

Ambient Compute

Machine Learning Machine Learning

7 © 2022 Arm

Arm Confidential Compute Architecture

Introduced as supplement and optional in Armv9.2-A

Driven by the expanding need to ensure privacy and security while harnessing data in ever more
powerful ways

Confidential Compute Architecture (Arm CCA) was announced in March 2021 and first specs publicly
released in June 2021.

Arm CCA protects all data and code wherever computing happens

Protects data in-use by preventing privileged access to the resources, whilst retaining the right to
manage them

8 © 2022 Arm

Confidential Compute in Arm

Confidential Computing is the protection of data in use, by performing computation in a hardware-based secure
environment, to shield portions of code and data from access or modification, even from privileged software.

Confidential compute on Arm happening across the ecosystem

Arm architecture isolation technologies that enable confidential compute

TrustZone®

▪ Protected from Host
OS/Hypervisor

▪ Platform security use
cases for SiP + OEM

▪ Specific tool
chains/Trusted OS

▪ Limited resource

Virtualization

▪ Can be used to protect
from host primary OS
kernel

▪ Standard OS
development

▪ Limited only by available
memory

S-EL2
Virtualization

▪ Complementary to
first two

▪ Improves modularity
and isolation in
TrustZone

NEW - Arm CCA

▪ Protects from host
OS/Hyp/TrustZone

▪ Standard OS
development

▪ Limited only by
available memory

9 © 2022 Arm

Arm Confidential Compute Architecture – Overview

ArchitectureRequirements

1. Secure execution environment that isolates
content from more privileged SW:
Host OS / Hypervisor, or TrustZone

2. Scale: There should be no specific limits on
resources for these environments

3. Standard OS agnostic programming model –
no platform specific drivers / toolchains

4. Attestable

1. Armv9-A Realm Management Extension
(FEAT_RME) introduces Realms and new
isolation boundaries so that Realm content
cannot be accessed by other Realms,
by Host OS / Hypervisor, or by TrustZone

2. Dynamic memory: available memory
dynamically moved between Realms or other
use, e.g regular processes / VMs

3. Standard ABI to manage Realms

4. System HW architecture and standard ABI
specifications to support attestation for Realms

10 © 2022 Arm

Realms at the Virtual Machine Level

• Realms are supported at the virtual
machine (VM) level
• Very similar to AMD SEV-SNP / Intel TDX

• Hypervisor manages the resources
of a Realm VM (memory, scheduling),
but cannot access those resources

• Memory is protected in two ways:
• Isolation: invalid accesses result in faults

e.g. Hypervisor access of Realm memory causes
a fault to that hypervisor

• Encryption: mainly for reboot attacks

• Protection covers device DMA
and processors

App App

OS Kernel

Hypervisor

Non-secure

OS Kernel

App App

Realm

VM1

11 © 2022 Arm

Realm Threat Model
Confidentiality Mitigated by

Hypervisor/Kernel/Secure world read private
Realm memory or register state

Device DMA reads private Realm memory or
register state

Integrity

Hypervisor/Kernel/Secure world modifies
private Realm memory or register state
Examples:
• Modify saved context
• Writing to Realm pages
• Memory remapping or aliasing

Device DMA modifies private Realm memory
or register state

Availability

Denial of service to a Realm – it is scheduled
by OS/Hyp

Realm mounts a DoS attack on the hypervisor

Indirect SW attacks Mitigated by

Known SW error injection – E.g.: Rowhammer,
CLKSCREW

Known side channels E.g.: Spectre / Meltdown

Direct HW attacks

Physical DRAM probe and replay

Mitigation requires additional HW

Mitigated by Arm CCA

(processor/SMMU/system and FW)

SW in the Realm has the tools
to protect itself

Not mitigated

Arch

HW

Realm

Arch

Arch

Arch

Arch

Arch Realm

Arch Realm

HW

© 2022 Arm

Arm CCA
Hardware Architecture

Realm Management Extension (RME)

13 © 2022 Arm

Arm Architecture

Like most architectures, we provide different levels of
privilege

• EL0: User mode

• EL1: Kernel mode

• EL2: Hypervisor mode

There are two stages of address translation:

• Stage 1 to translate VA → IPA
(Intermediate Physical Address, a.k.a. Guest Physical
Address)

• Stage 2 to translate IPA → PA

Note:

• Armv8.1 introduced the Virtual Host Extensions that supports running
the kernel in EL2

• This is how Linux/KVM is run in many deployments today

OS Kernel

Hypervisor

Non-secure

App
V
M
1

App

EL1

EL2

EL0

14 © 2022 Arm

Arm CCA Hardware Architecture – TrustZone

Security
State/PA
space

Non-Secure
PA

Secure
PA

Non-secure Allow Block

Secure Allow Allow

OS Kernel

Hypervisor

Non-secure

SPM

TOS

T
A

Secure

Secure
Partition

Monitor

T
A

App
V
M
1

App

EL1

EL2

EL0

EL3

• Two physical address spaces: Secure and Non-Secure

• At any point in time a processor can be in one of two
security states: Secure or Non-Secure
• Orthogonal to Exception level

e.g a processor can be in Non-Secure-EL1 or Secure EL1

• Isolation boundaries based on security state

• EL3: monitor mode - used mainly to switch between
security states

• No architectural mechanism to dynamically move
memory /devices between Secure and Non-Secure PA
• Memory for Secure PA is typically statically carved out

• TrustZone typically used by device vendors to provide
platform security use case – includes processor and
device support

15 © 2022 Arm

Arm CCA Hardware Architecture – What Does RME Add?
RME adds another two security states and
physical address spaces

• Realm: new space for confidential
compute
• Realm VMs run in Realm state, but are

managed from Non-secure state
• Realm VMs can access their own private

Realm physical address space, and share data
via Non-secure physical address space

• Secure and Realm are mutually distrusting

• Root: EL3 FW gets its own private
address spaceSecurity

State/PA
space

Non-Secure
PA

Secure
PA

Realm
PA

Root
PA

Non-secure Allow Block Block Block

Secure Allow Allow Block Block

Realm Allow Block Allow Block

Root Allow Allow Allow Allow

OS Kernel

Hypervisor

Non-secure

SPM

TOS

T
A

Secure

Secure
Partition

Realm

HypervisorRMM

Kernel

App

Monitor

T
A

App
R
V
M
1

Root

R
V
M
2

V
M
1

App

Kernel

App

EL1

EL2

EL0

EL3

16 © 2022 Arm

Arm CCA Hardware Architecture – What Does RME Add?
• Memory can move between physical

address spaces dynamically

• Granule Protection Table (GPT): new data
structure that determines the current
physical address space of a page

• GPT is controlled by the monitor in EL3

• Granule Protection Check (GPC): HW checks
GPT on an access and faults invalid accesses

• Faults in illegal accesses routable to EL2
• Faults due to broken configuration go to EL3

• HW isolation between components in a
security state uses page tables as before

– Realm-to-Realm separation is based on page
tables

• Root, Realm and Secure use encrypted
memory

– Boot ephemeral keys per address space and
address tweak

Security
State/PA
space

Non-Secure
PA

Secure
PA

Realm
PA

Root
PA

Non-secure Allow Block Block Block

Secure Allow Allow Block Block

Realm Allow Block Allow Block

Root Allow Allow Allow Allow

OS Kernel

Hypervisor

Non-secure

SPM

TOS

T
A

Secure

Secure
Partition

Realm

HypervisorRMM

Kernel

App

Monitor

T
A

App
R
V
M
1

Root

R
V
M
2

V
M
1

App

Kernel

App

EL1

EL2

EL0

EL3

17 © 2022 Arm

Arm CCA System Concepts

System Bus

Memory

ctlr

CPU 0

L1I$ L1D$

L2$

CPU 1

L1I$ L1D$

DMA

DRAM

MMU provides stage 2 isolation

Between Realms

MMU

GPC

MMU

GPC

SMMU

GPC

18 © 2022 Arm

Arm CCA System Concepts

System Bus

Memory

ctlr

CPU 0

L1I$ L1D$

L2$

CPU 1

L1I$ L1D$

DMA

DRAM

A Granule Protection Check
checks Access attributes against
the Physical Granule’s attributes

Stored in the Granule Protection
Table

MMU

GPC

MMU

GPC

SMMU

GPC

19 © 2022 Arm

Arm CCA System Concepts

System Bus

Memory

ctlr

CPU 0

L1I$ L1D$

L2$

CPU 1

L1I$ L1D$

DMA

DRAM

MMU

GPC

MMU

GPC

SMMU

GPC

MPE

Per Physical Address Space
+ address tweak encryption

20 © 2022 Arm

Arm CCA System Concepts

System Bus

Memory

ctlr

CPU 0

L1I$ L1D$

L2$

CPU 1

L1I$ L1D$

DMA

DRAM

MMU

GPC

MMU

GPC

SMMU

GPC

MPE

Per Physical Address Space
+ address tweak encryption

Page
table
and GPT
isolation
plaintext
Data

Encrypted
per Physical
Address
Space

21 © 2022 Arm

Arm Confidential Compute Architecture

• Arm CCA adds a new environment for 3rd party confidential compute: Realm world

• By isolating Realms into their own private Realm World, system wide security analysis is greatly simplified

• With Arm CCA, memory can move dynamically between worlds

• Hypervisor owns management of resources

App App

OS Kernel

Hypervisor

Non-secure

SPM

TOS

TA TA

Secure

Secure
PartitionOS Kernel

App App

OS Kernel

App App

OS Kernel

App App Device
VM

(GPU)

Secure
Device

VM

Realm

Realm Physical
Address Space

0x000…

0xFFFF….

0x000…

0xFFFF….

Confidential compute for
3rd parties

Hypervisor-based security,
owns resources and scheduling

TrustZone with dynamic
memory 1st party use cases

Non-Secure
Physical Address

Space

Secure Physical
Address Space

OS

A
p
p

A
p
p

OS

A
p
p

A
p
p

OS Kernel

AppApp

Monitor

22 © 2022 Arm

Arm CCA = RME Hardware + CCA Firmware

Hardware provides isolation primitives

• Additional processor security states

• Memory access control

Monitor manages

• Context switching CPU execution
between security states

• Memory access permissions

Realm Management Monitor
(RMM)

• Manages Realm execution
environment and inter-Realm
isolation

• Allows Non-secure host to
create, schedule and manage
Realms EL3

Non-secure state

SPM

TOS

T
A

Secure state

Secure
Service

Realm state

Hosting
environment

RMM

Realm

Realm
software

Monitor

T
A

EL1

EL0

EL2

Hardware

23 © 2022 Arm

Published Arm CCA Resources
Enabling system level software developers

• Publicly released specs
• https://developer.arm.com/armcca

• Joint Arm / Linaro Tech Event on 23rd June 2021
• Videos at https://connect.linaro.org/resources/arm-cca/

• Confidential specs
• Device Assignment (DA) - beta
• Realm Management Monitor (RMM) - alpha
• Memory Encryption Contexts (MEC) - alpha
• https://arm.causewaynow.com/

• FOSDEM talk 5th Feb 2022
• https://fosdem.org/2022/schedule/event/tee_arm_cca/

https://developer.arm.com/armcca
https://connect.linaro.org/resources/arm-cca/
https://arm.causewaynow.com/
https://fosdem.org/2022/schedule/event/tee_arm_cca/

Confidential © 2022 Arm

Backup Slides

25 © 2022 Arm

Arm CCA ISA Impacts

PE

EL0

EL1

EL2

EL3

Non-Secure Secure

Root

Realm

Memory
Realm
page

Root
page

Secure
page

NS
page

NS
page

NS
page

Realm
page

Secure
page

Granular Protection

Check

Cache

tag
tag
tag
tag

Encryption engine

POPA

New system instructions are introduced to be used by
the monitor when it updates the GPT:

• Data Cache Clean/Invalidate to the PoPA
• The architecture introduces a point of physical aliasing above

which cache lines are tagged with the Physical Address Space
they reside in

• The instruction guarantees that no copies of a PA tagged with
a Physical Address Space are above the PoPA

• TLB invalidation for GPT caching:
• GPT association of a page with a physical address space is

cacheable in TLBs – A TLB invalidation instruction is added to
invalidate the association

Execution and data prediction restriction system instructions
extended with new security states - CFP RCTX, CPP RCTX, DVP
RCTX

26 © 2022 Arm

Architectural State Impacts
To keep HW simple most state is reused and replicated across Security States

• Configuration changes:
• Added two Root registers for Granule Protection Table base address and configuration

• Granule Protection Check faults - treated similar existing MMU faults
• Additional syndrome information (for loads/stores but also trace/sample profiling)
• Routing of Granule protection faults

• Fields that represent Security state or Physical address space extended with new
encodings
• Mainly affects self hosted and external debug, trace, performance monitoring and sample profiling

27 © 2022 Arm

MMU Impacts

• The Physical Address Space of an access is derived from the output of MMU Stage 1/2
and verified by a Granule Protection Check:

– Non-secure state: PAS is hard-wired to Non-secure
– Secure state: existing NS bit in Stage 1 descriptor selects between Secure and Non-secure PAS
– Realm state: new NS bit in Stage 2 descriptor selects between Realm and Non-secure PAS
– EL3 stage 1: two bits (one new) allow specifying 4 PAS-es

• The following Translation Regimes are supported in the Realm security state:
• Realm EL1&0

– e.g. Stage 1 and Stage2 of an EL1 Realm VM

• Realm EL2
– for Real management firmware

• Realm EL2&0
– allows RMM to manage the memory for EL0

© 2022 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

© 2022 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

